Fast Learning with Nonconvex L1-2 Regularization

نویسندگان

  • Quanming Yao
  • James T. Kwok
چکیده

Convex regularizers are often used for sparse learning. They are easy to optimize, but can lead to inferior prediction performance. The difference of `1 and `2 (`1-2) regularizer has been recently proposed as a nonconvex regularizer. It yields better recovery than both `0 and `1 regularizers on compressed sensing. However, how to efficiently optimize its learning problem is still challenging. The main difficulty is that both the `1 and `2 norms in `1-2 are not differentiable, and existing optimization algorithms cannot be applied. In this paper, we show that a closed-form solution can be derived for the proximal step associated with this regularizer. We further extend the result for low-rank matrix learning and the total variation model. Experiments on both synthetic and real data sets show that the resultant accelerated proximal gradient algorithm is more efficient than other noncovex optimization algorithms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stochastic Particle Gradient Descent for Infinite Ensembles

The superior performance of ensemble methods with infinite models are well known. Most of these methods are based on optimization problems in infinite-dimensional spaces with some regularization, for instance, boosting methods and convex neural networks use L1-regularization with the non-negative constraint. However, due to the difficulty of handling L1-regularization, these problems require ea...

متن کامل

Regularization: Convergence of Iterative Half Thresholding Algorithm

In recent studies on sparse modeling, the nonconvex regularization approaches (particularly, Lq regularization with q ∈ (0, 1)) have been demonstrated to possess capability of gaining much benefit in sparsity-inducing and efficiency. As compared with the convex regularization approaches (say, L1 regularization), however, the convergence issue of the corresponding algorithms are more difficult t...

متن کامل

A SMART Stochastic Algorithm for Nonconvex Optimization with Applications to Robust Machine Learning

In this paper, we show how to transform any optimization problem that arises from fitting a machine learning model into one that (1) detects and removes contaminated data from the training set while (2) simultaneously fitting the trimmed model on the uncontaminated data that remains. To solve the resulting nonconvex optimization problem, we introduce a fast stochastic proximal-gradient algorith...

متن کامل

Large-scale Inversion of Magnetic Data Using Golub-Kahan Bidiagonalization with Truncated Generalized Cross Validation for Regularization Parameter Estimation

In this paper a fast method for large-scale sparse inversion of magnetic data is considered. The L1-norm stabilizer is used to generate models with sharp and distinct interfaces. To deal with the non-linearity introduced by the L1-norm, a model-space iteratively reweighted least squares algorithm is used. The original model matrix is factorized using the Golub-Kahan bidiagonalization that proje...

متن کامل

A SMART STOCHASTIC ALGORITHM FOR NONCONVEX OPTIMIZATION A SMART Stochastic Algorithm for Nonconvex Optimization with Applications to Robust Machine Learning

Machine learning theory typically assumes that training data is unbiased and not adversarially generated. When real training data deviates from these assumptions, trained models make erroneous predictions, sometimes with disastrous effects. Robust losses, such as the huber norm, were designed to mitigate the effects of such contaminated data, but they are limited to the regression context. In t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1610.09461  شماره 

صفحات  -

تاریخ انتشار 2016